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Abstract

Many gene regulatory networks are modeled at the mesoscopic scale, where chemical pop-

ulations change according to a discrete state (jump) Markov process. The chemical master

equation (CME) for such a process is typically infinite dimensional and unlikely to be compu-

tationally tractable without reduction. The recently proposed Finite State Projection (FSP)

technique allows for a bulk reduction of the CME while explicitly keeping track of its own

approximation error. In previous work, this error has been reduced in order to obtain more

accurate CME solutions for many biological examples. In this paper, we show that this “error”

has far more significance than simply the distance between the approximate and exact solu-

tions of the CME. In particular, we show that this error term serves as an exact measure of the

rate of first transition from one system region to another. We demonstrate how this term may
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be used to (i) directly determine the statistical distributions for stochastic switch rates, escape

times, trajectory periods, and trajectory bifurcations, and (ii) evaluate how likely it is that

a system will express certain behaviors during certain intervals of time. We also present two

systems-theory based FSP model reduction approaches that are particularly useful in such

studies. We illustrate the benefits of this approach to analyze the switching behavior of a

stochastic model of Gardner’s genetic toggle switch.

1 Introduction

Many biochemical systems contain so many molecules that chemicals can be described by continuous

valued ordinary differential equations. However, many gene regulatory networks contain cellular

components, such as genes, RNA molecules, and proteins, that must be quantified by discrete

integer amounts. As a result, a slightly noisy environment will introduce significant randomness and

result in phenomena such as stochastic switching [1], stochastic focussing [2], stochastic resonance,

and other effects that cannot be captured with deterministic models and require a separate set of

analytical tools.

A well-mixed chemical system at constant temperature and volume behaves as a discrete state

Markov process [3]. Each state of this process corresponds to a specific population vector, and each

reaction takes the system from one state to another. The system’s probability distribution evolves

according to a set of linear ODEs known as the chemical master equation (CME). The CME is

relatively easy to define (see below), but it can be very difficult or impossible to solve. Most

research on the CME has concentrated on simulating trajectories of the CME using methods such

as the Stochastic Simulation Algorithm (SSA) [4] or a related approximation (see for example: [5,6]).

2



While these methods reliably provide samples of the process defined by the CME, they require a

huge collection of simulations to obtain an accurate statistical solution. This becomes particularly

troublesome when one wishes to compute the transition probabilities of very rare events or to

compare distributions arising from slightly different parameter sets.

Recently, we developed a new approach to approximate the solution of the CME: the Finite

State Projection (FSP) algorithm [7–11]. This approach systematically collapses the infinite state

Markov process into a combination of a truncated finite state process and a single absorbing “error

sink”. The resulting system is finite dimensional and solvable. The probabilities of the truncated

process give a lower bound approximation to the true CME solution. The probability measure of

the error sink gives an exact computation of the error in this approximation. This error can then

be decreased to reach any non-zero error tolerance through a systematic expansion of projections

known as the FSP algorithm [7]. However, as we will illustrate in this paper, the “error” guarantee

of the FSP provides more than a simple distance between the FSP solution and the true solution

to the CME. Instead, this important term in the projection provides a wealth of exact information

about the original Markov process. From it one can determine the statistical distributions of switch

rates and escape probabilities and also analyze stochastic pathway bifurcation decisions.

Many recent studies have examined switch rates in the context of stochastic processes operating

at their equilibrium or nonequilibrium steady state distributions. As a few representative exam-

ples, these methods include Transition Path Sampling [12], Transition Interface Sampling [13], and

various approaches of transition path sampling with multiple interfaces [14–17]. By concentrating

on trajectories that eventually result in switches and interrupting the the vast majority trajecto-

ries that do not, these approaches are far more efficient than a standard brute force Monte Carlo

approach like the SSA. However, as trajectory based analyses, they are limited by the slow con-
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vergence of Monte Carlo approaches and cannot provide strict accuracy guarantees. In contrast to

these methods, the current study focusses on the transient evolution of probability distributions and

not on the sampled trajectories of a steady state process. The results sought in this paper are not

histograms of waiting times between switches from one large potential well (or metastable state) to

another, but are instead a set of precise upper and lower bounds on the distribution of transition

times between specific states and/or arbitrarily chosen state space regions.

The paper is a significant extension of the work in [18] in which we explore the added information

contained in the FSP “error” sink and present some of the types of analyses for which this infor-

mation provides. The next section provides a precise summary of the original FSP results from [7]

but with an emphasis on understanding the underlying intuition of the error sink. In Section 3

we show how multiple absorbing sinks can be used to effectively analyze pathway bifurcation deci-

sions in stochastic systems. Then, in Section 4, we show how these sinks can be used to determine

some statistical quantities for stochastic switches, such as switch waiting and return times, and we

introduce two model reductions to the FSP that can help in the analysis of complex trajectories.

In Section 5, we illustrate how these new approaches can be applied to a stochastic model of the

genetic toggle switch [19]. Finally, in Section 6, we finish with some concluding remarks and future

directions.

2 Background on the Finite State Projection approach

We consider the mesoscopic description of chemical kinetics, where the state of an N reactant

process is defined by the integer population vector x ∈ ZN . Reactions are transitions from one

state to another x→ x + νµ, where νµ is known as the stoichiometry (or direction of transition) of
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the µth reaction. For a system containing M distinct reaction types, there are at most M reaction

events that will take the system from xi to some other state xj 6= xi and at most M reaction events

that will bring the system from xk 6= xi to xi. Each reaction has an infinitesimal probability of

occurring in the next infinitesimal time step of length dt; this state dependent quantity is known

as the propensity function: wµ(x)dt.

If Pi(t) and P µ
i (t) are used to denote the probabilities that the system will be in xi and xµi =

xi − νµ, respectively, at time t, then:

Pi(t+ dt)− Pi(t)
dt

= −
M∑
µ=1

wµ(xi)Pi(t)− wµ(xµi )P µ
i (t).

Taking the limit dt → 0 easily yields the chemical master equation [20], which can be written in

vector form as: Ṗ(t) = AP(t). The ordering of the infinitesimal generator, A, is determined by

the enumeration of the configuration set X = {x1,x2,x3, . . .}. Each ith diagonal element of A is

negative with a magnitude equal to the sum of the propensity functions of reactions that leave the

ith configuration. Each off-diagonal element, Aij, is positive with magnitude wµ(xj) if there is a

reaction µ ∈ {1, . . . ,M} such that xi = xj + νµ and zero otherwise. In other words:

Aij =


−
∑M

µ=1wµ(xi)

wµ(xj)

0

for (i = j)

for all j such that (xi = xj + νµ)

Otherwise

 . (1)

When the cardinality of the set X is infinite or extremely large, the solution to the CME is

unclear or vastly difficult to compute, but one can get a good approximation of that solution using

Finite State Projection (FSP) techniques [7–10]. To review the FSP, we will first introduce some
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convenient notation. Let J = {j1, j2, j3, . . .} denote an index set, and let J ′ denote the complement

of the set J . If X is an enumerated set {x1,x2,x3, . . .}, then XJ denotes the subset {xj1 ,xj2 ,xj3 , . . .}.

Furthermore, let vJ denote the subvector of v whose elements are chosen according to J , and let AIJ

denote the submatrix of A such that the rows have been chosen according to I and the columns have

been chosen according to J . For example, if I and J are defined as {3, 1, 2} and {1, 3}, respectively,

then: 
a b c

d e f

g h k


IJ

=


g k

a c

d f

 .
For convenience, let AJ := AJJ .

LetM denote a Markov chain on the configuration set X, such as that shown in Fig. 1a, whose

master equation is Ṗ(t) = AP(t), with initial distribution P(0). LetMJ denote a reduced Markov

chain, such as that in Fig. 1b, comprised of the configurations indexed by J plus a single absorbing

state. The master equation of MJ is given by

 ṖFSP
J (t)

Ġ(t)

 =

 AJ 0

−1TAJ 0


 PFSP

J (t)

G(t)

 , (2)

with initial distribution,  PFSP
J (0)

G(0)

 =

 PJ(0)

1−
∑

PJ(0)

 .
At this point it is crucial to have a very clear understanding of how the processMJ relates toM

and in particular the definitions of the terms PFSP
J (t) and G(t). First, the scalar G(0) is the exact

probability that the system begins in the set XJ ′ at time t = 0, and G(t) is the exact probability
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that the system has been in the set XJ ′ at any time τ ∈ [0, t]. Second, the vector PFSP
J (0) contains

the exact probabilities that the system begins in the set XJ at time t = 0, and PFSP
J (t) are the exact

joint probabilities that the system (i) is in the corresponding states XJ at time t, and (ii) the system

has remained in the set XJ for all τ ∈ [0, t]. Note that PFSP
J (t) also provides a finite dimensional

approximation of the solution to the CME, as is clearly seen in the following reformulation of the

original FSP theorems [7]:

Theorem 1. For any index set J and any initial distribution P(0), it is guaranteed that

PJ(t) ≥ PFSP
J (t) ≥ 0.

Proof. PFSP
J (t) is a more restrictive joint distribution than PJ(t).

Theorem 2. Consider any Markov chain M and its reduced Markov chain MJ . If G(tf ) = ε,

then ∣∣∣∣∣∣∣
 PJ(tf )

PJ ′(tf )

−
 PFSP

J (tf )

0


∣∣∣∣∣∣∣
1

= ε. (3)

Proof. The left side of (3) can be expanded to:

LHS =
∣∣PJ(tf )−PFSP

J (tf )
∣∣
1

+ |PJ ′(tf )|1 .

Applying the Theorem 1 yields

LHS = |PJ(tf )|1 −
∣∣PFSP

J (tf )
∣∣
1

+ |PJ ′(tf )|1 .

Since P(tf ) is a probability distribution |PJ(tf )|1 + |PJ ′(tf )|1 = |P(tf )|1 = 1 and the LHS can be
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rewritten:

LHS = 1−
∣∣PFSP

J (tf )
∣∣
1
.

Because the pair {G(tf ),P
FSP
J (tf )} are a probability distribution forMJ , one can see that the right

hand side is precisely equal to |G(tf )|1 and the proof is complete.

Theorem 1 guarantees that as we add points to the subset XJ , then PFSP
J (tf ) monotonically

increases toward the true solution of the CME, and Theorem 2 provides a certificate the approxi-

mation’s accuracy.

In previous work, the probability lost to the absorbing state, G(t), has been used only as in

Theorem 2 as a means to evaluate the FSP projection in terms of its accuracy compared to the

true CME solution. As a probability of first transition, however, this term is an exact exit rate,

and therefore has an importance of its own, as we will see in the remainder of this paper.

3 Pathway Bifurcation analysis with the FSP

There are numerous examples in which biological systems decide between expressing two or more

vastly different responses. These decisions occur in developmental pathways in multicellular organ-

isms as heterogeneous cells divide and differentiate, in single cell organisms that radically adapt to

survive or compete in changing environments, and even in viruses that must decide to lay dormant

or make copies of themselves and ultimately destroy their host [1]. Many of these decisions are

stochastic in nature, and models and methods are needed to determine the nature and probability

of these decisions. Next, we show how the FSP approach can be adapted to answer some of these
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questions.

In the original FSP approach, a single absorbing state has been used, whose probability coincides

with the probability that the system has exited the region XJ . Suppose one wishes to know a little

more about how the system has exited this region. For example in the process in Fig. 1a, one may

ask:

Problem 1: What is the probability that the first time the system exits XJ it does so via reaction

1 (rightward horizontal arrow) or via reaction 3 (leftward diagonal arrow)?

Problem 2: What is the probability distribution for the population of species s2 when the

population of s1 first exceeds a specific threshold, smax1 ?

These questions can be answered by creating a new Markov process with multiple absorbing

states as shown in Fig. 1(c,d). Let M∗
J refer to such a chain where we have included K different

absorbing states. The CME for the two problems above can be written as:

 ṖFSP
J (t)

Ġ(t)

 =

 AJ 0

Q 0


 PFSP

J (t)

G(t)

 , (4)

where G = [G0, . . . , GK ]T and the matrix Q is given in Problem 1 by:

Qµi =

 aµ(xji)

0

if (xji + νµ) /∈ XJ

Otherwise

 ,
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and in Problem 2 by:

Qki =


∑
aµ(xji)

0

For all ji s.t. (xji)2 = k

and µ s.t. (xji + νµ)1 > smax1

Otherwise

 .

Note the underlying requirement that each ji is an element of the index set J . Also recall that xj

is a population vector–the integer (xj)n is the nth element of that population vector.

For either problem, the solution of (4) at a time tf is found by taking the exponential of the

matrix in (4) and has the form

 PFSP
J (t)

G(t)

 =

 exp(AJtf ) 0∫ tf
0

Q exp(AJτ)dτ I


 PFSP

J (0)

G(0)

 . (5)

This solution yields all of the same information as previous projections with regards to the accuracy

of PFSP
J (t), but it now provides additional useful knowledge. Specifically, each Gk(t) gives the

cumulative probability distribution at time t that the system will have exited from XJ at least once

and that that exit transition will have occurred in the specific manner that was used to define the

kth absorbing state.

In [7] we showed a FSP algorithm that relied on increasing the set XJ until the solution reaches

a certain pre-specified accuracy. This expansion was performed using the concept of N−step reach-

ability, where each set {XJN
} included all configurations that are reachable from XJ0 in N reactions

or fewer. The additional knowledge gained from solving Problems 1 or 2 above is easily incorporated

into this algorithm. If most of the probability measure left via one particular reaction or from one
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particular region of XJ , it is reasonable to expand XJ accordingly. Such an approach is far more

efficient than the original FSP algorithm and has been considered in [9].

4 Analyzing switch statistics with the FSP

As discussed above, the term G(t) for the process MJ is simply the probability that the system

has escaped from XJ at least once in the time interval [0, t]. With such an expression, it is almost

trivial to find quantities such as median or pth percentile escape times from the set XJ . We need

only find the time t such that G(t) in (2) is equal to p%. In other words, we find t such that

G(t) = 1− |exp(AJt)PJ(0)|1 = 0.01p. (6)

This can be solved with a relatively simple line search as we will do in the example of Section 5.

Using a multiple time interval FSP approach such as those explored in [9] or [10] could significantly

speed up such a search, but this has not been utilized in this study.

Alternatively, one may wish to ask not only for escape times, but for the periods required to

complete more complicated trajectories. For example, suppose the we have a Markov chain such as

that in Fig. 2a. The system begins in the state represented by the shaded circle, and we wish to

know the distribution for the time until the system will first visit the region in the grey box and

then return to the original state. Biologically this may correspond to the probability that a system

will switch from one phenotypical expression to another and then back again. To solve this problem,

we can duplicate the lattice as shown in Fig. 2b. In this description, the top lattice corresponds

to states where the system has never reached the grey box, and the bottom lattice corresponds to
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states where the system has first passed through that box. The master equation for this system is

given by: 
Ṗ1
J1

(t)

Ṗ2
J2

(t)

Ġ(t)

 =


AJ1 0 0

B2C1 AJ2 0

0 C2 0




P1
J1

(t)

P2
J2

(t)

G(t)

 , (7)

where XJ1 includes every state except those in the grey box, and XJ2 includes every state except

the final destination. The matrix C1 is the output matrix for the first sub-chain and accounts for

transitions that exit the XJ1 (via a transition into the grey box):

[C1]ik =

 wµ(x)

0

for x = kth state in XJ1 , and x + νµ = ith state in the grey box

Otherwise

 . (8)

The matrix B2 is the input matrix that maps the outputs of the first sub-chain to the correct states

of the second sub-chain:

[B2]ji =

 1

0

for x = jth state in XJ2 , and x = ith state in the grey box

Otherwise

 . (9)

The probability of the absorbing point, G(t), in this description is now exactly the probability that

the system has completed the return trip in the time interval [0, t]. This solution scheme requires a

higher dimensional problem than the original problem. However, with the FSP approach from [7],

this dimension can be reduced while maintaining a strict measure of the method’s accuracy.

12



4.1 Input-Output Description of Connected Markov Chains

Each part of the multiple phase trajectories described above has a common form:

Ṗi(t) = AiPi(t) + Biui(t)

yi(t) = CiPi(t), (10)

where ui(t) and yi(t) are the flow of probability into and out of the the ith Markov sub-chain,

respectively, and Pi(t) is the vector of probabilities of the states within the ith Markov sub-chain.

In this description the input matrix Bi shows where and how the inputs enter into the ith sub-chain,

and the output matrix Ci maps the distribution Pi(t) to the output yi(t). Once each input-output

sub-system has been written in the form of the triplet (Ai,Bi,Ci), one may apply many standard

tools to reduce their orders based upon Hankel singular values (see, for example, Chapter 4 of [21]).

Many of these tools are available as part of the Robust Control Toolbox in MATLAB, and for the

examples below, we will apply the MATLAB function balancmr. Upon application of these tools,

the reduced system is then characterized by a lower order triplet (Ãi, B̃i, C̃i), which can be directly

substituted into (7).

4.2 Numerical Convolution to Compute Trajectory Times

So far complex trajectories were analyzed by creating a Markov sub-chain for each phase of the

trajectory and then creating a new, much larger Markov chain by connecting these sub-chains in

series. This can quickly result in a very high dimensional problem, that can require excessive

memory and/or be very computationally intensive to solve. As an alternative, one can utilize the

linearity of the system to treat each sub-chain separately and then reconnect them with a numerical
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convolution approach. For example, in Fig. 2b, one can first consider the top portion of the chain

to find the rate of probability flow into the grey box as a response to beginning at the initial state

u0 at time t = 0. This flow is simply the response to the initial distribution:

y(τ) = C1 exp(AJ1τ)PJ1(0),

where each element of the vector y(τ) corresponds to the flow into a specific point in the grey box.

This probability flow is then the input to the bottom portion of the Markov chain. In practice y(τ)

is computed using an ODE solver and then stored at N points logarithmically distributed points

between t = 0 and t = tf . This discrete time signal is then interpolated for use as the forcing term

for a second ODE system describing the bottom portion of the chain. Thus two smaller order ODEs

are solved rather than a single much larger order system. One can readily extend this approach to

compute the time distributions to complete more complicated trajectories such as hitting multiple

way points or completing multiple circuits of the same return trip. In the next subsection, we

illustrate how such a convolution based approach can be particularly useful in the computation of

probabilities of complex trajectories.

4.3 Probabilities of Specific Trajectories

In addition to computing the time a system would take to complete a trajectory, one can also

compute the probability that a system will exhibit specific traits at specific instances in time. Define

a partial probability density vector P{Cn}(tn) = P{(XJ0 , t0); (XJ1 , t1); . . . ; (XJn−1 , tn−1)}(tn), as the

probability that the system satisfies the conditions {Cn}:={it begins in the region XJ0 at t = t0;

is later is in the region XJ1 at the time t1 ≥ t0; and so on until it is finally in the various states
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of X at the time tn ≥ tn−1}. Note that the vector P{Cn}(tn) has the same dimension as X. The

FSP approach provides a simple method to compute P{Cn}(tn), but first we need to define an

embedding operator, DJ{.}, as follows. Given any vector v and its J indexed subvector vJ , the

vector DJ {vJ} has the same dimension as v and its only non-zero entries are the elements of vJ

distributed according to the indexing set J . Furthermore, let Φ(t2 − t1) = exp(A(t2 − t1)) denote

the transition operator that maps distributions at the time t1 to the corresponding distributions at

the later time t2. Finally, let the vector PJn{Cn}(tn) denote the Jn-indexed sub-vector of P{Cn}(tn).

Proposition 1.1 Using the above notation, the vector P{Cn}(tn) follows the recursive formula

P{Cn+1}(tn+1) = Φ(tn+1 − tn)DJn {PJn{Cn}(tn)} , (11)

for all t0 ≤ t1 ≤ . . . ≤ tn+1.

As a more general form, suppose that the conditions in Cn are that the system will be in sets

{XJi
} not at specific ti’s but at any time during the finite intervals {Ti = [ai, bi]}. In this case, we

let the partial probability density vector P{Cn}(tn) = P{(XJ0 , T0); (XJ1 , T1); . . . ; (XJn , Tn−1)}(tn)

denote the probability density that the system satisfies the conditions {Cn} that it begins in the

region XJ0 at some t0 ∈ T0, is later in the region XJ1 at some t1 ∈ T1, and so on until it is finally

in the various states of X at a time tn ≥ bn. As above P{Cn}(tn) satisfies a recursive formula but

in a more general form:

1The proof of Propositions 1 and 2 are to be included in supplemental materials (See Appendix in manuscript).
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Proposition 2.1 The vector P{Cn}(tn) follows the recursive formula

P{Cn+1}(tn+1) = Φ(tn+1 − an)DJn {PJn{Cn}(an)}+

∫ bn

an

Φ(tn+1 − τ)y(τ)dτ, (12)

where y(τ) is given by

y(τ) = DJn{AJn,J ′n exp(AJ ′n(τ − an))PJ ′n{Cn}(an)}.

In the following section, this approach and the methods from above are each applied in the

analysis of a stochastic model for Gardner’s genetic toggle switch [19].

5 Analyzing the genetic toggle switch

To illustrate the usefulness of the absorbing sink of the FSP in the analysis of stochastic gene

regulatory networks, we consider a stochastic model of Gardner’s gene toggle model [19]. This

system, shown in Fig. 3 is comprised of two mutually inhibiting proteins, s1 and s2. The four

reactions, Rµ, and corresponding propensity functions, wµ, are given as:

R1 ; R2 ; R3 ; R4

∅ → s1 ; s1 → ∅ ; ∅ → s2 ; s2 → ∅

w1 = 16
1+s2

; w2 = s1 ; w3 = 50
1+s2.5

1
; w4 = s2

For these parameters, the system exhibits two distinct phenotypes, which for convenience we will

label OFF and ON. By definition, we will call the cell OFF when the population of s1 exceeds 5

molecules and s2 is less than 15 molecules, and we will label the system as being ON when the
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population of s2 exceeds 15 molecules and s1 is less than 5 molecules. Each of these phenotypes

is relatively stable–once the system reaches the ON or OFF state, it tends to stay there for some

time. For this study, we assume that the system begins with a population s1 = s2 = 0, and we wish

to analyze the subsequent switching behavior.

Q1. After the process starts, the system will move within its configuration space until eventually

the cell turns OFF or the cell turns ON. What percentage will choose to turn ON first (s2 exceeds

15 before s1 exceeds 5)?

To analyze this initial switch decision, we use the methodology outlined in Section 3. We choose

XJ to include all states such that s1 ≤ 5 and s2 ≤ 15. There are only two means through which the

system may exit this region: If s1 = 5 and R1 occurs (making s1 = 6), then the system is absorbed

into a sink state GOFF . If s2 = 15 and R3 occurs, then the system is absorbed into a sink state

GON . The master equation for this Markov chain has the form of that in (4) and contains 98 states

including the two absorbing sinks. By solving this equation for the given initial condition, one can

show that the probability of turning ON first is 78.1978%. Thus, nearly four-fifths of the cells will

turn ON before they turn OFF. The asymptotes of the dashed lines in Fig. 4b correspond to the

probabilities of that the system will first turn ON and OFF, respectively.

Q2. Find the times t50 and t99 at which 50% and 99% of all cells will have made their initial

decision to turn ON or OFF?

To solve this question we can use the same Markov chain as in Q1, and search for the times, t50

and t99, at which GOFF (t50) +GON(t50) = 0.5 and GOFF (t99) +GON(t99) = 0.99, respectively. This

has been done using a simple line search, in which we found that t50 = 0.5305s and t99 = 5.0595s.

In Fig 4b these times correspond to the points in time where the dashed line labeled “First Switch”
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crosses 0.5 and 0.99, respectively.

Q3. What is the time at which 99% of all cells will have turned ON at least once?

Because we must include the possibility that the cell will first turn OFF and then turn ON,

the solution for this question requires a different projection. Let X be the set of states such that

s1 ≤ 50, s2 ≤ 105, and s1s2 ≤ 300. Furthermore, let the projection, XON ′ includes all states in

X that are not ON (s1 < 15 or s2 > 5). As time passes, probability will leave this region in two

manners: either it exits in to the aggregated ON sink (GON) or it exits out of X altogether in to a

second absorbing sink Gerr, which results in a loss of precision. This error comes into play as follows:

If t1 is defined as the time at which GON(t1)+Gerr(t1) = 0.99, and t2 is defined as the time at which

GON(t2) = 0.99, then the time, t99, at which 99% turn ON is bounded by t1 ≤ t99 ≤ t2. For the

chosen projection, this bound is very tight yielding a guarantee that t99 ∈ [1733.3153, 1733.3157]s.

For comparison 104 runs of the SSA give a much less accurate estimate of t99 ≈ 1735.7. Similarly,

one can use a projection XOFF ′ , which includes all points in X that are not OFF, to find that it will

take between 800.495 and 800.487 seconds until 99% of cells will turn OFF (compared to t99 ≈ 827s

found with 104 SSA runs). Median times, t50, have also been computed and are listed in Table 1.

Note that the times for Q3 are very large in comparison to those in Q2; this results from the

fact that the ON and OFF regions are relatively stable. This trait is evident in Fig. 4, where the

dashed lines correspond to the time of the first ON (or OFF) decision provided that the system has

not previously turned OFF (or ON). Since about 78% percent turn ON before they turn OFF, this

dashed ON curve asymptotes at about 0.78 (see Q1 and Q2). On the other hand, the solid lines

corresponds to the times for the first ON (or OFF) decision whether or not the system has previously

turned OFF (or ON). The kinks in these distributions, where the solid and dashed curves separate,

result from the stability of the two regions region. In particular, the solid ON curve exhibits a more
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severe kink due to the fact that the OFF region is more stable than the ON region (compare solid

lines).

The projections XON ′ and XOFF ′ used here included 715 and 782 states respectively. While

systems of this size are still relatively inexpensive to analyze, the computational cost will build

significantly should we desire to add more complexity. Using balanced truncation, each of these

systems can be reduced to 10th order with very little loss in accuracy (compare solid lines and circle

markers in Fig. 4, and see Table 1).

Q4. What is the distribution for the round trip time until a cell will first turn ON and then turn

OFF?

In order to answer this question we use the round-trip methodology from the latter half of

Section 4. Intuitively, this approach is very similar to that depicted in Fig. 2b, except that the

top and bottom portions of the Markov chain are not identical and the final destination is a region

of the chain as opposed to a single point. Also, since the Markov process under examination is

infinite dimensional, we first apply a finite state projection to reduce this system to the finite set

X described in Q3. For the system’s outbound journey into the ON region, we use the projection

XON ′ from Q3. After the system turns ON, it begins the second leg of its trip to the OFF region

through a different projection XOFF ′ . When the system reaches the OFF region on the second leg,
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it is absorbed into a sink G(t). The full master equation for this process can be written as:



Ṗ1
ON ′(t)

Ṗ2
OFF ′(t)

Ġ(t)

ε(t)


=



AON ′ 0 0 0

B2C1 AOFF ′ 0 0

0 B3C2 0 0

BεC1 BεC2 0 0





P1
ON ′(t)

P2
OFF ′(t)

G(t)

ε(t)


, (13)

where AON ′ and AOFF ′ are defined as in (1). The matrices C1 and B2 are defined as in (8) and

(9) above and account for the transitions from the states in XON ′ to the corresponding states in

XOFF ′ . The vector B3C2 corresponds to the transitions that exit XOFF ′ and turn OFF (completing

the full trip). The last two vectors BεC1 and BεC2 correspond to the rare transitions that leave

the projected space, X, and therefore contribute to a computable error, ε(t) in our analysis.

The solution of this system for the scalar G(t) then gives us the joint probability that (i) the

system remains in the set XON ′ until it enters the ON region at some time τ1 ∈ [0, t), and (ii) it then

remains in the set XOFF ′ until it enters the OFF region at some time τ2 ∈ (τ1, t]. This distribution

is plotted with the dotted lines in Fig. 4. Once again we can see the effect that the asymmetry of

the switch plays on the times of these trajectories; the ON region is reached first more often and

the ON region is less stable, thus the ON then OFF trajectory will occur significantly faster than

the OFF then ON trajectory (compare dotted lines in Fig. 4, and see Table 1).

In Fig. 4, the distributions have been computed in two different manners, which yield nearly in-

distinguishable results (Compare lines and circles in Fig. 4). First, the lines correspond to solutions

where (13) has been solved as a single large system of 1496 ODEs. In the second approach, the sys-

tem has been analyzed as two separate sub-systems defined by the triplets SY S1 = (AON ′ ,PON ′ ,C1)

and SY S2 = (AOFF ′ ,B2,B3C2). Each of these systems has been reduced to 10th order using bal-
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anced truncation. Once reduced, the systems were again reconnected resulting in a 22nd order

approximation, consisting of the two 10th order reduced systems plus G(t) and ε(t). Table 1 gives

the predicted median time t50 and the associated computational costs for these methods as well

as for 104 runs of the stochastic simulation algorithm (SSA). Both FSP methods are far faster

and more accurate than the corresponding SSA approach. Comparing the full and reduced FSP

approaches, note that the reduced systems retain a high degree of the full systems’ accuracy, but

the reduction itself is very expensive. In these numerical experiments, we have used MATLAB’s

balanced truncation code balancmr, which does not take advantage of the extreme sparsity of the

FSP formulation. With parallel algorithms for the balanced truncation of sparse systems, such as

those in [22], much of this computational cost may be recovered.

Q5. What is the probability that the system will be (i) ON at some point t1 ∈ [a1, b1] =

[100s, 110s], then (ii) OFF at some point t2 ∈ [a2, b2] = [200s, 210s] and finally (iii) ON at t3 = 300s?

To answer this question we again use the projections, X, XON ′ and XOFF ′ from above. In

terms of the notation used in Section 4.3, we are seeking to compute PON{C3}(t3), where {C3} =
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{(x0, 0); (XON , [100, 110]); (XOFF , [200, 210])}. This computation is done recursively as follows:

P{C1}(a1) = exp(Aa1)P(0)

P{C2}(a2) = exp(A(a2 − a1))DON{PON{C1}(a1)}+

∫ b1

a1

exp(A(a2 − τ))y1(τ)dτ

y1(τ) = DON{AON,ON ′ exp(AON ′(τ − a1))PON ′{C1}(a1)}

P{C3}(a3) = exp(A(t3 − a2))DOFF{POFF{C2}(a2)}+

∫ b2

a2

exp(A(t3 − τ))y2(τ)dτ

y2(τ) = DOFF{AOFF,OFF ′ exp(AOFF ′(τ − a2))POFF ′{C2}(a2)}

Using this approach, one can compute the probability of the first measurement |PON{C1}(100)|1 =

0.543, |POFF{C2}(200)|1 = 0.174, and |PON{C3}(300)|1 = 0.0266. Also, by keeping track of the

amount of the probability measure that exits X through each stage, one can obtain a guarantee that

these computations are accurate to within relative errors of 9.1× 10−6, 4.9× 10−5, and 3.3× 10−4

percent, respectively. The total computational effort is 63.2s. For comparison 104 SSA runs take

2020s to complete this same study, and provide an estimate for |PON{C3}(300)|1 of 0.0270, which

is a relative error of 1.63%.

6 Conclusion

In order to account for the importance of intrinsic noise, researchers model many gene regulatory

networks as being jump Markov processes. In this description, each state corresponds to a specific

integer population vector, and transitions correspond to individual reactive events. These processes
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have probability distributions that evolve according to a possibly infinite dimensional chemical

master equation (CME) [3]. In previous work, we showed that the Finite State Projection (FSP)

method [7] can provide a very accurate solution to the CME for some stochastic gene regulatory

networks. The FSP method works by choosing a small finite set of possible states and then keeping

track of how much of the probability measure exits that set as time passes. In the original FSP,

the amount of the probability measure that exits the chosen region yields bounds on the FSP ap-

proximation error. In this paper we have shown that this exit probability has intrinsic value and

can allow for the precise computation of the statistics of switching times, escape times and com-

pletion times for more complicated trajectories. Unlike previous analyses of stochastic switch rates

that utilize Monte Carlo type approaches [12–17], the current method directly approximates the

transient solution to the master equation and provides otherwise unachievable precision guarantees

on the switch time distribution. At present this precision comes at a cost of adverse complexity

scaling. For system with large numbers of molecular species, the approach suffers from an expo-

nential explosion of states. But with model reduction and advanced solution techniques such as the

balanced truncation approach above and those described in [9–11], it is envisioned that one may

overcome much of this curse of dimensionality.

Although the methods presented here have applicability well beyond systems biology, we have

specifically illustrated these techniques on a stochastic model of Gardner’s genetic toggle switch [19].

We have used the FSP to find the distribution for the times at which the system first turns ON

or OFF as well as the time until the system will complete a trajectory in which it first switches

one way and then the other. In each of these computations, the FSP results come with extremely

precise guarantees as to their own accuracy.

23



Acknowledgment

The authors would like to acknowledge Eric Klavins, with whom we have many interesting dis-

cussions on related topics. This material is based upon work supported by the National Science

Foundation under Grant NSF-ITR CCF-0326576 and the Institute for Collaborative Biotechnologies

through Grant DAAD19-03-D-0004 from the U.S. Army Research Office.

References

[1] A. Arkin, J. Ross, and M. H., “Stochastic kinetic analysis of developmental pathway bifurcation

in phage λ-infected escherichia coli cells,” Genetics, vol. 149, pp. 1633–1648, 1998.

[2] J. Paulsson, O. Berg, and M. Ehrenberg, “Stochastic focusing: Fluctuation-enhanced sensitiv-

ity of intracellular regulation,” PNAS, vol. 97, no. 13, pp. 7148–7153, 2000.

[3] D. T. Gillespie, “A rigorous derivation of the chemical master equation,” Physica A, vol. 188,

pp. 404–425, 1992.

[4] ——, “Exact stochastic simulation of coupled chemical reactions,” J. Phys. Chem., vol. 81,

no. 25, pp. 2340–2360, May 1977.

[5] ——, “Approximate accelerated stochastic simulation of chemically reacting systems,” J.

Chem. Phys., vol. 115, no. 4, pp. 1716–1733, Jul. 2001.

[6] Y. Cao, D. Gillespie, and L. Petzold, “The slow-scale stochastic simulation algorithm,” J.

Chem. Phys., vol. 122, no. 014116, Jan. 2005.

24



[7] B. Munsky and M. Khammash, “The finite state projection algorithm for the solution of the

chemical master equation,” J. Chem. Phys., vol. 124, no. 044104, 2006.

[8] S. Peles, B. Munsky, and M. Khammash, “Reduction and solution of the chemical master

equation using time-scale separation and finite state projection,” J. Chem. Phys., vol. 125, no.

204104, Nov. 2006.

[9] B. Munsky and M. Khammash, “A multiple time interval finite state projection algorithm for

the solution to the chemical master equation,” J. Comp. Phys., vol. 226, no. 1, pp. 818–835,

2007.

[10] K. Burrage, M. Hegland, S. Macnamara, and R. Sidje, “A krylov-based finite state projection

algorithm for solving the chemical master equation arising in the discrete modelling of biological

systems,” Proc. of The A.A.Markov 150th Anniversary Meeting, pp. 21–37, 2006.

[11] B. Munsky and M. Khammash, “The finite state projection approach for the analysis of stochas-

tic noise in gene networks,” IEEE Trans. Automat. Contr./IEEE Trans. Circuits and Systems:

Part 1, vol. 52, no. 1, pp. 201–214, Jan. 2008.

[12] P. Bolhuis, D. Chandler, C. Dellago, and P. Geissler, “Transition path sampling: Throwing

ropes over rough mountain passes, in the dark,” Annu. Rev. Phys. Chem., vol. 53, pp. 291–318,

2002.

[13] T. van Erp. and P. Bolhuis, “Elaborating transition interface sampling methods,” J. Comp.

Phys., vol. 205, pp. 157–181, 2005.

[14] A. Faradjian and R. Elber, “Computing time scales from reaction coordinates by milestoning,”

J. Chem. Phys., vol. 120, no. 23, pp. 10 880–10 889, 2004.

25



[15] D. Moroni, P. Bolhuis, and T. van Erp., “Rate constants for diffusive processes by partial path

sampling,” J. Chem. Phys., vol. 120, no. 9, pp. 4055–4065, 2004.

[16] R. Allen, P. Warren, and P. Rein ten Wolde, “Sampling rare switching events in biochemical

networks,” Phys. Rev. Lett., vol. 94, no. 018104, Jan. 2005.

[17] R. Allen and P. Frenkel, D. Rein ten Wolde, “Simulating rare events in equilibrium or nonequi-

librium stochastic systems,” J. Chem. Phys., vol. 124, no. 024102, Jan. 2006.

[18] B. Munsky and M. Khammash, “Computation of switch time distributions in stochastic gene

regulatory networks,” Submitted to the 26th American Control Conference (ACC), July 2008.

[19] T. Gardner, C. Cantor, and J. Collins, “Construction of a genetic toggle switch in escherichia

coli,” Nature, vol. 403, pp. 339–242, 2000.

[20] N. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed. Elsevier, 2001.

[21] G. Dullerud and F. Paganini, A Course in Robust Control Theory: a Convex Approach, 1st ed.

Springer, 2000.

[22] J. Badfa, P. Benner, R. Mayo, and E. Quintana-Orti, “Parallel algorithms for balanced trunca-

tion model reduction of sparse systems,” Applied Parallel Computing, vol. 3732, pp. 267–275,

2006.

26



Supporting Material for “Precise Transient Analysis of Switches and Trajectories

in Stochastic Gene Regulatory Networks.”

Here we give the proofs of Propositions 1 and 2 from Section 4.3. These are to be supplied

online as supporting materials.

Proposition 1. Using the above notation, the vector P{Cn}(tn) follows the recursive formula

P{Cn+1}(tn+1) = Φ(tn+1 − tn)DJn {PJn{Cn}(tn)} , (14)

for all t0 ≤ t1 ≤ . . . ≤ tn+1.

Proof. Let P(tn) be the full probability distribution at tn, which can be separated into two

parts:

P(tn) = P{Cn}(tn) + P{C ′n}(tn),

where P{Cn}(tn) and P{C ′n}(tn) are the partial distributions at tn that do and do not satisfy the

conditions in {Cn}, respectively. The full distribution distribution at tn+1 is

P(tn+1) = Φ(tn+1 − tn)P(tn)

= Φ(tn+1 − tn) (P{Cn}(tn) + P{C ′n}(tn))

= Φ(tn+1 − tn)
(
DJnPJn{Cn}(tn) +DJ ′nPJ ′n{Cn}(tn) + P{C ′n}(tn)

)
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where J ′n denotes the complement of Jn. By definition the partial distribution Φ(tn+1−tn)DJnPJn{Cn}(tn)

satisfies the conditions {Cn+1}, while the second and third partial distribution terms Φ(tn+1 −

tn)DJ ′nPJ ′n{Cn}(tn) and Φ(tn+1 − tn)P{C ′n}(tn) do not, and we are left with the final result in (14).

Proposition 2. The vector P{Cn}(tn) follows the recursive formula

P{Cn+1}(tn+1) = Φ(tn+1 − an)DJn {PJn{Cn}(an)}+

∫ bn

an

Φ(tn+1 − τ)y(τ)dτ, (15)

where y(τ) is given by

y(τ) = DJn{AJn,J ′n exp(AJ ′n(τ − an))PJ ′n{Cn}(an)}.

Proof. Let P(t) be the full probability distribution at t ≥ an, which can be separated into two

parts:

P(tan) = P{Cn}(tan) + P{C ′n}(tan),

where P{Cn}(tan) and P{C ′n}(t) are the portions of the distribution that do and do not satisfy {Cn},

respectively. Furthermore, we can separate P{Cn}(tan) into two components

P{Cn}(tan) = w(t) +DJ ′n{zJ ′n(t)},
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where w(t) is the partial probability distribution that satisfies {Cn} and the additional condition

that the system is in XJn at any time τ ∈ [an, t], and zJn(t) is the partial distribution where the

system satisfies {Cn} and the additional condition that the system remains in the set XJ ′n for all

times τ ∈ [an, t]. Note that elements of w(t) refer to each of the states in X while zJ ′n(t) refers

only to states in XJ ′n . During the interval [an, bn] the partial distributions w(t) and zJ ′n(t) evolve

according to the linear system:


ẇJn(t)

ẇJ ′n(t)

żJ ′n(t)

 =


AJn AJn,J ′n AJn,J ′n

AJ ′n,Jn AJ ′n 0

0 0 AJ ′n




wJn(t)

wJ ′n(t)

zJ ′n(t)

 ,

with initial conditions 
wJn(an)

wJ ′n(an)

zJ ′n(an)

 =


DJn{PJn{Cn}(an)}

0

DJ ′n{PJ ′n{Cn}(an)}

 .
Solving this system at t = bn yields:

w(bn) = Φ(bn − an)DJn{PJn{Cn}(an)}+

∫ bn

an

Φ(bn − τ)D{AJn,J ′n exp(AJ ′n(τ − an))PJ ′n{Cn}(an)}

= Φ(bn − an)DJn{PJn{Cn}(an)}+

∫ bn

an

Φ(bn − τ)y(τ), and

zJ ′n(bn) = exp(AJ ′n(bn − an))PJ ′n{Cn}(an).
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The total distribution at time tn+1 can be written as:

P(tn+1) = Φ(tn+1 − bn)P{Cn(tan)}+ Φ(tn+1 − an)P{C ′n}(tan)

= Φ(tn+1 − bn)
(
w(bn) +DJ ′n{zJ ′n(bn)}

)
+ Φ(tn+1 − an)P{C ′n}(tan)

By the definitions of w(t), zJ ′n(bn) and P{C ′n}(tan), only Φ(tn+1 − bn)w(bn) satisfies the conditions

of {Cn+1}, and

P{Cn+1}(tn+1) = Φ(tn+1 − bn)w(bn)

= Φ(tn+1 − bn)

(
Φ(bn − an)DJn{PJn{Cn}(an)}+

∫ bn

an

Φ(bn − τ)yn(τ)

)
= Φ(tn+1 − an)DJn{PJn{Cn}(an)}+

∫ bn

an

Φ(tn+1 − τ)yn(τ),

thus completing the proof.
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Figure 1: (a): A Markov chain for a two species chemically reacting system,M. The process begins

in the configuration shaded in grey and undergoes three reactions: The first reaction ∅ → s1 results

in a net gain of one s1 molecule and is represented by right arrows. The second reaction s1 → ∅

results in a net loss of one s1 molecule and is represented by a left arrow. The third reaction s1 → s2

results in a loss of one s1 molecule and a gain of one s2 molecule. The dimension of the Master

equation is equal to the total number of configurations in M, and is too large to solve exactly.

(b) In the FSP algorithm a configuration subset XJ is chosen, and all remaining configurations are

projected to a single absorbing point G. This results in a small dimensional Markov process, MJ .

(c,d) Instead of considering only a single absorbing point, transitions out of the finite projection

can be sorted as to how they leave the projection space. (c) G1 and G3 absorb the probability that

has leaked out through reactions 1 or 3, respectively. This information can then be used to analyze

the probabilities of certain decisions or to expand the configuration set in later iterations of the

FSP algorithm. (d) Each Gi absorbs the probability that s1 first exceeds a certain threshold, smax1

when s2 = i.

Figure 2: Schematic representation for the computation of round trip times for discrete state Markov

processes. (a) A Markov chainM where the system begins in the shaded circle, and we wish to find

the distribution for the time at which the system first enters then shaded region and then returns

to the initial state. (b) A corresponding Markov process where the top points correspond to states

on the journey from the dark circle to the shaded box, and the bottom circles correspond to states

along the return trip. In this description, the absorbing point G(t) corresponds to the probability

that the system has gone from the initial condition to the grey box and then back again.
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Figure 3: Schematic of the toggle model comprised of two inhibitors: s1 inhibits the production of

s2 and vice-versa.

Figure 4: Probability densities (a) and cumulative distributions (b) of the times of switch decisions

for a stochastic model of Gardner’s gene toggle switch [19]. The dashed lines correspond to the

probabilities that the first switch decision will be to enter the ON or OFF region. Note that

the system will turn ON first for about 78% of trajectories (Q1); the rest will turn OFF first–

see asymptotes of dashed lines in (b). A third dashed line in (b) corresponds to the cumulative

distribution until the time of the first switch decision (Q2). The solid lines correspond to the

probabilities for the first time the system will reach the ON (or OFF) region (Q3). The dotted lines

correspond to the times until the system completes a trajectory in which it begins at s1 = s2 = 0,

it turns ON (or OFF), and finally turns OFF (or ON) (Q4). Two methods have been used in these

analyses: the lines correspond to the original FSP solution, and circle markers denote the reduced

order model solutions (See also Table 1).

Table 1: Comparison of the computational efficiency of computing switch rates of a Stochastic Gene

Toggle Switch using three techniques to solve the chemical master equation: the original Finite State

Projection approach (FSP), the FSP approach with balance truncation reduction (FSP-RED), and

104 runs of the SSA.
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Single Stage Trajectories
First Switch to OFF

Method Jred Jsolve Jtotal
a t50 % Error

FSP - 31.0s 31.0s 81.952s < 2× 10−5

FSP-RED 111.8 1.85s 113.7s 81.952s < 4× 10−5

104 SSA - 2068s 2068s 78.375s ≈ 4.3

First Switch to ON
Jred Jsolve Jtotal t50 % Error

FSP - 25.7s 25.7s 0.65655s < 1× 10−7

FSP-RED 133.5s 1.85s 135.3s 0.65656s < 8× 10−4

104 SSA - 404.4s 404.4 0.65802s ≈ 0.22

Two Stage Trajectories
First Completion of OFF then ON trajectory

Jred Jsolve Jtotal t50 % Error
FSP - 46.9s 46.9s 434.969s < 3.5× 10−5

FSP-RED 222.0s 1.95s 224.0s 434.968s < 4.5× 10−3

104 SSA - 3728s 3728s 441.394 ≈ 1.5

First Completion of ON then OFF trajectory
Jred Jsolve Jtotal t50 % Error

FSP - 51.0s 51.0s 167.530s < 6× 10−7

FSP-RED 241.4s 1.98s 243.4s 167.939 ≈ 0.24
104 SSA - 3073s 3073 166.860 ≈ 0.40

aAll simulations have been performed in MATLAB version R2007a on
a MacBook Pro with a 2.16 GHz Intel Core Duo processor and 2 GB of
memory. All ODEs have been solved with MATLAB’s stiff ODE solver
ode15s with relative tolerance 10−8 and absolute tolerance of 10−20.

Table 1:
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